Code for Quiz 6, more dplyr and our first interactive chart
drug_cos.csv
, health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
, respectivelyglimse
to get a glimpse of the dataRows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer~
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer~
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer~
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer~
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer~
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer~
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer~
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer~
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer~
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer~
Start with drug_cos
Extract observations for the ticker MRK from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 1 more variable: year <dbl>
Use the health_cos
data
For each industry calculate
mean_netmargin_percent = mean(netincome / revenue) * 100
SEE QUIZ = median(SEE QUIZ / revenue) * 100
SEE QUIZ = min(SEE QUIZ / revenue) * 100
SEE QUIZ = max(SEE QUIZ / revenue) * 100
mean netmargin percent for the industry ** Medical Care Facilities** is 6.10%
SEE QUIZ for the industry ** SEE QUIZ ** is ???%
SEE QUIZ for the industry SEE QUIZ is ???%
SEE QUIZ for the industry SEE QUIZ is ???%
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
[1] "Drug Manufacturers - General"
co_name
is located in co_location
and is a member of co_industry
group